CALCULUS

Limits
Common Derivatives
\[
\lim_{x \to a} f(x) = L \quad \phi 1
\]
\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} f(x) = L
\]
\[
\lim_{x \to a} f(x) \bigg/ \lim_{x \to a} g(x) \quad \phi 1
\]
\[
\lim_{x \to a} f(x) \bigg/ \lim_{x \to a} g(x) \quad \text{Does Not Exist}
\]

L'Hopital's Rule
\[
\text{If } \lim_{x \to a} f(x) = 0 \quad \text{or} \quad \lim_{x \to a} g(x) = \pm \infty\quad \text{then},
\]
\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \quad a \text{ is a number, } \pm \text{ or } -
\]

Derivatives
Definition and Notation
\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

Basic Properties and Formulas
\[(f \cdot g)' = f' \cdot g + f \cdot g' \quad - \text{Product Rule}
\]
\[
\frac{d}{dx} \left(\frac{f}{g} \right) = \frac{f' \cdot g - f \cdot g'}{g^2} \quad - \text{Quotient Rule}
\]
\[
\frac{d}{dx} \left(x^n \right) = n \cdot x^{n-1} \quad - \text{Power Rule}
\]
\[
\frac{d}{dx} \left(f \left(g(x) \right) \right) = f' \left(g(x) \right) \cdot g'(x)
\]

This is the Chain Rule
\[
\frac{d}{dx} \left(\csc x \right) = -\csc x \cot x
\]
\[
\frac{d}{dx} \left(\sin x \right) = \cos x
\]
\[
\frac{d}{dx} \left(\cot x \right) = -\csc^2 x
\]
\[
\frac{d}{dx} \left(\cos x \right) = -\sin x
\]
\[
\frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1-x^2}}
\]
\[
\frac{d}{dx} \left(\sec x \right) = \sec x \tan x
\]
\[
\frac{d}{dx} \left(\tan x \right) = \sec^2 x
\]
\[
\frac{d}{dx} \left(\cos^{-1} x \right) = -\frac{1}{\sqrt{1-x^2}}
\]
\[
\frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}
\]

Increasing/Decreasing
Concave Up/Concave Down
Critical Points
\[x = c \text{ is a critical point of } f(x) \text{ provided either}
1. \ f'(c) = 0 \text{ or } 2. \ f'(c) \text{ doesn't exist.}

Increasing/Decreasing
1. If \ f'(x) > 0 \text{ for all } x \text{ in an interval } I \text{ then}
\ f(x) \text{ is increasing on the interval } I.
2. If \ f'(x) < 0 \text{ for all } x \text{ in an interval } I \text{ then}
\ f(x) \text{ is decreasing on the interval } I.
3. If \ f'(x) = 0 \text{ for all } x \text{ in an interval } I \text{ then}
\ f(x) \text{ is constant on the interval } I.

Concave Up/Concave Down
1. If \ f''(x) > 0 \text{ for all } x \text{ in an interval } I \text{ then}
\ f(x) \text{ is concave up on the interval } I.
2. If \ f''(x) < 0 \text{ for all } x \text{ in an interval } I \text{ then}
\ f(x) \text{ is concave down on the interval } I.

Inflection Points
\[x = c \text{ is an inflection point of } f(x) \text{ if the concavity changes at } x = c.

The information for this handout was compiled from the following sources:
Calculus Formulas

1st Derivative Test
If \(x = c \) is a critical point of \(f(x) \) then \(x = c \) is
1. a rel. max. of \(f(x) \) if \(f'(x) > 0 \) to the left
 of \(x = c \) and \(f'(x) < 0 \) to the right of \(x = c \).
2. a rel. min. of \(f(x) \) if \(f'(x) < 0 \) to the left
 of \(x = c \) and \(f'(x) > 0 \) to the right of \(x = c \).
3. not a relative extremum of \(f(x) \) if \(f'(x) \) is
 the same sign on both sides of \(x = c \).

2nd Derivative Test
If \(x = c \) is a critical point of \(f(x) \) such that
\(f''(c) = 0 \) then \(x = c \)
1. is a relative maximum of \(f(x) \) if \(f''(c) < 0 \).
2. is a relative minimum of \(f(x) \) if \(f''(c) > 0 \).
3. may be a relative maximum, relative minimum, or neither if \(f''(c) = 0 \).

Fundamental Theorem of Calculus
Part I: \(\frac{d}{dx} \left[\int_a^b f(t) \, dt \right] = f(x) \)
Part II: \(\int_a^b f(x) \, dx = F(b) - F(a) \)

Common Integrals
\[\sqrt{k} \, dx = k \, x + c \]
\[x^n \, dx = \frac{1}{n+1} x^{n+1} + c, \quad n \neq -1 \]
\[\sqrt{x} \, dx = \ln|x| + c \]
\[\frac{1}{ax+b} \, dx = \frac{1}{a} \ln|ax+b| + c \]
\[\ln u \, du = u \ln(u) - u + c \]
\[e^u \, du = e^u + c \]
\[\cos u \, du = \sin u + c \]
\[\sin u \, du = -\cos u + c \]
\[\sec^2 u \, du = \tan u + c \]
\[\sec u \tan u \, du = \sec u + c \]
\[\csc u \cot u \, du = -\csc u + c \]
\[\csc^2 u \, du = -\cot u + c \]

Integration by Parts:
\[\int u \, dv - v \, du = \int (u \, dv - v \, du) \]

Products and (some) Quotients of Trig Functions
For \(\int \sin^n x \cos^m x \, dx \) we have the following:
1. \(n \) odd. Strip 1 sine out and convert rest to
 cosines using \(\sin^2 x = 1 - \cos^2 x \), then use
 the substitution \(u = \cos x \).
2. \(m \) odd. Strip 1 cosine out and convert rest
 to sines using \(\cos^2 x = 1 - \sin^2 x \), then use
 the substitution \(u = \sin x \).
3. \(n \) and \(m \) both odd. Use either 1. or 2.
4. \(n \) and \(m \) both even. Use double angle
 and/or half angle formulas to reduce the
 integral into a form that can be integrated.

For \(\int \tan^n x \sec^m x \, dx \) we have the following:
1. \(n \) odd. Strip 1 tangent and 1 secant out and
 convert the rest to secants using
 \(\tan^2 x = \sec^2 x - 1 \), then use the substitution
 \(u = \sec x \).
2. \(m \) even. Strip 2 secants out and convert rest
 to tangents using \(\sec^2 x = 1 + \tan^2 x \), then
 use the substitution \(u = \tan x \).
3. \(n \) odd and \(m \) odd. Use either 1. or 2.
4. \(n \) even and \(m \) odd. Each integral will be
 dealt with differently.

The information for this handout was compiled from the following sources:
Calculus Formulas

Trig Substitutions:
\[
\begin{align*}
\sqrt{a^2 - b^2} x^2 & \quad x = \frac{a}{b} \sin \theta \\
\cos^2 \theta &= 1 - \sin^2 \theta \\
\sqrt{b^2 x^2 - a^2} & \quad x = \frac{a}{b} \sec \theta \\
\tan^2 \theta &= \sec^2 \theta - 1 \\
\sqrt{a^2 + b^2} x^2 & \quad x = \frac{a}{b} \tan \theta \\
\sec^2 \theta &= 1 + \tan^2 \theta
\end{align*}
\]

Partial Fractions:
Factor in \(Q(x)\) & Term in P.F.D
\[
\begin{align*}
ax + b & \quad \frac{A}{ax + b} \\
ax^2 + bx + c & \quad \frac{Ax + B}{ax^2 + bx + c}
\end{align*}
\]

Area Between Curves:
\[
\begin{align*}
& y = f(x) & A &= \int_b^d [\text{upper function}] - [\text{lower function}] \, dx \\
& x = f(y) & A &= \int_a^b [\text{right function}] - [\text{left function}] \, dy
\end{align*}
\]

Volumes of Revolution:
\[
V = \sqrt[3]{A(x)} \, dx \quad \text{and} \quad V = \sqrt[3]{A(y)} \, dy
\]

Rings
\[
A = \pi \left(\left(\text{outer radius} \right)^2 - \left(\text{inner radius} \right)^2 \right)
\]

Cylinders
\[
A = 2\pi \left(\text{radius} \right) \left(\text{width} / \text{height} \right)
\]

Work:
\[
W = \int_a^b F(x) \, dx
\]

Average Function Value:
\[
\bar{f} = \frac{1}{b-a} \int_a^b f(x) \, dx
\]

Arc Length & Surface Area:
\[
SA_a^b = \sqrt[3]{2\pi y \, ds} \quad \text{(rotate about x-axis)} \\
SA_a^b = \sqrt[3]{2\pi x \, ds} \quad \text{(rotate about y-axis)}
\]

Improper Integral

Infinite Limit
1. \[\int_a^b f(x) \, dx = \lim_{\xi \to a^+} \int_a^\xi f(x) \, dx\]
2. \[\int_a^b f(x) \, dx = \lim_{\eta \to b^-} \int_\eta^b f(x) \, dx\]
3. \[\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx\]

Discontinuous Integrand
1. Discont. at \(a\): \[\int_a^b f(x) \, dx = \lim_{\xi \to a^+} \int_a^\xi f(x) \, dx\]
2. Discont. at \(b\): \[\int_a^b f(x) \, dx = \lim_{\eta \to b^-} \int_\eta^b f(x) \, dx\]
3. Discontinuity at \(a < c < b\):
\[\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx\]

Comparison Test for Improper Integrals:
If \[\int_a^b f(x) \, dx \quad \text{and} \quad \int_a^b g(x) \, dx\]
then,
1. If \[\int_a^b f(x) \, dx \quad \text{conv.} \quad \text{then} \quad \int_a^b g(x) \, dx \quad \text{conv.}\]
2. If \[\int_a^b g(x) \, dx \quad \text{divg.} \quad \text{then} \quad \int_a^b f(x) \, dx \quad \text{divg.}\]

Useful fact: If \(a > 0\) then
\[\int_a^b \frac{1}{x^p} \, dx \quad \text{converges if} \quad p > 1 \quad \text{and diverges for} \quad p \leq 1\]

The information for this handout was compiled from the following sources: