Physics I & II Formulas

Kinematics

\[v_{av} = \frac{\Delta d}{\Delta t} = \frac{v_i + v_f}{2} \]
\[a_{av} = \frac{v_f - v_i}{\Delta t} \]
\[\Delta d = \frac{(v_i + v_f)\Delta t}{2} \]
\[\Delta d = v_f \Delta t - \frac{1}{2} a \Delta t^2 \]
\[v_f = v_i + a \Delta t \]
\[\Delta d = v_i \Delta t + \frac{1}{2} a \Delta t^2 \]
\[v_f^2 = v_i^2 + 2a \Delta d \]

Dynamics

\[F_{oc} = ma \]
\[F_g = mg \]
\[F_a = \frac{Gm_m}{\Delta d^2} \]
\[F_f = \mu F_N \]
\[F = kx \]
\[a_c = \frac{v^2}{r} \]
\[F_c = ma_c = \frac{mv^2}{r} \]
\[a_c = \frac{4\pi^2 r}{T^2} = 4\pi^2 rf^2 \]
\[F_1 = m_1 \left(\frac{d_2}{d_1} \right)^2 \]
\[g = \frac{GM}{R^2} \]
\[v_{ex} = \sqrt{\frac{2GM}{r}} \]
\[r^3 = \frac{GM}{4\pi^2} \]
\[v^2 = \frac{Gm_k}{r} \]

Energy, Momentum & Power

\[W = F\Delta d \cos \theta \]
\[E_g = mgh = \frac{Gm}{r} \]
\[E_k = \frac{1}{2} mv^2 \]
\[E_{eh} = F_f \Delta d \]
\[E_{elastic} = \frac{1}{2} Kx^2 \]
\[T = 2\pi \sqrt{\frac{m}{k}} \]
\[P = \frac{W}{\Delta t} = \frac{F\Delta d}{\Delta t} = Fv_{av} \]
\[p = mv \]
\[p = p' \]
\[J = F\Delta t = m\Delta v = \Delta p \]
\[\text{efficiency} = \frac{W_{\text{output}}}{W_{\text{input}}} \times 100\% \]

Important

NO displacement, NO work

When work is done ON the system, work is POSITIVE

When work is done BY the system, work is NEGATIVE

The information for this handout was compiled from the following sources:
Physics I & II Formulas

Waves
\[v = A f \]
\[L = \frac{n\lambda}{2} \]
\[L = \frac{(2n-1)\lambda}{4} \]
\[n_1 \sin \theta = n_2 \sin \theta \]
\[\sin \theta = \frac{1}{n} \]
\[n\lambda = d \sin \theta \]

Where \(v \) is also \(v = \sqrt{\frac{f}{\mu}} \)

\(\nu \) Wave speed \([\nu] = \text{m/s} \)

\(\lambda \) Wavelength \([\lambda] = \text{m} \)

\(A \) Amplitude \([A] = \text{m} \)

\(f \) Frequency \([f] = \text{Hz} \)

\(T \) Period \([T] = \text{s} \)

Electricity and Magnetism Equations (Also suitable for AP Physics Exam) from PhysicsLand.com

\[F = \frac{kq_1 q_2}{r^2} \]

\[E = \frac{F}{q} \]

\[U_e = qV = \frac{kq_1 q_2}{r} \]

\[I_{avg} = \frac{\Delta Q}{\Delta t} \]

\[R = \frac{E}{I} \]

\[\nu = I \]

\[P = IV \]

\[V = \frac{C}{Q} \]

\[C = \frac{\epsilon_0 A^2}{d} \]

\(\eta_{av} = -\frac{\Delta H}{\Delta t} \)

\(E = \frac{B}{c} \)

Where:

\(A \) area

\(B \) magnetic field

\(C \) capacitance

\(d \) distance

\(E \) electric field

\(F \) force

\(l \) length

\(P \) power

\(Q \) charge

\(q \) point charge

\(R \) resistance

\(\theta \) angle

\(\rho \) resistivity

\(\theta \) angle

\(\phi_m \) magnetic flux

The information for this handout was compiled from the following sources:
